For a positive integer n, let
fn(θ)=(tanθ2)(1+secθ)(1+sec2θ)(1+sec4θ)…(1+sec2nθ).
Then
f2(π16)=1
f3(π32)=1
f4(π64)=1
f5(π128)=1
E=fn(θ)=sin(θ2)cos(θ2)[2cos2(θ2)cosθ.2cos2θcos2θ.2cos22θcos4θ…2cos22n−1θcos2nθ]=sinθcosθ[2cos2θcos2θ.2cos22θcos4θ…2cos22n−1θcos2nθ]=tan2nθ.n=2,θ=π16f2(π16)=tan4.π16=tanπ4=1
Similarly, f3(π32),f4(π64) and f5(π128) is tanπ4=1