x2+x+x2+(1+2)x+1.2+x2+(2+3)x+2.3+....+x2+(n−1+n)x+(n−1).n=10n
nx2+[1+1+2+2+3+3+4+4+....+(n−1)+(n−1)+n]x+[1.2+2.3+3.4+....+(n−1).n]=10n
Let 1.2+2.3+3.4+...+(n−1).n=S
nx2+[2(n−1∑r=1r)+n]x+S=10n
nx2+(2(n−1)n2+n)x+S=10n
nx2+n2x+S=10n
Now, S=n−1∑r=1r(r+1)
S=n−1∑r=1(r2+r)
S=(n−1)(n−1+1)(2n−2+1)6+(n−1)(n−1+1)2
S=n(n−1)(2n−1)6+n(n−1)2
S=n(n−1)2[2n−13+1]
S=n(n−1)2[2n+23]
S=n(n−1)(n+1)3
Therefore, the equation becomes
nx2+n2x+n(n−1)(n+1)3=10n
3nx2+3n2x+n3−n=30n
3nx2+3n2x+n3−31n=0
For integral solutions of x, the discriminant of the equation should be a perfect square.
Δ=9n4−12n(n3−31n)
Δ=372n2−3n4
Δ=3n2(124−n2)
Now, check the options one by one.
A. n=12
Δ=3(144)(124−144)<0. Hence, option A cannot be the answer.
B. n=9
Δ=3(92)(124−81)=129(92) which is not a perfect square. Hence, option B cannot be the answer.
C. n=10
Δ=3(102)(124−100)=72(102) which is not a perfect square. Hence, option C cannot be the answer.
D. n=11
Δ=3(112)(124−121)=9(112) which is a perfect square. Hence, option D is the only possible answer.