Consider the matrix ⎡⎢⎣1αα2α1αα2α1⎤⎥⎦
determinant of ∣∣
∣
∣∣1αα2α1αα2α1∣∣
∣
∣∣
=1(1−α2)−α(α−α3)+α2(α2−α2)=0
=1−α2−α2+α4=0
⇒α4−2α2+1=0
⇒(α2−1)2=0
⇒α=±1
For α=1⎡⎢⎣1αα2α1αα2α1⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣1−1α1⎤⎥⎦ becomes
⎡⎢⎣111111111⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣1−11⎤⎥⎦
x+y+z=1,x+y+z=−1,x+y+z=1 thus this system has no solution.
For α=−1⎡⎢⎣1αα2α1αα2α1⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣1−1α1⎤⎥⎦ becomes
⎡⎢⎣1−11−11−11−11⎤⎥⎦⎡⎢⎣xyz⎤⎥⎦=⎡⎢⎣1−11⎤⎥⎦
x−y+z=1,−x+y−z=−1,x−y+z=1 thus this system has solution.
∴α=−1
Substituting α=−1 in 1+α+α2=1−1+1=1
∴1+α+α2=1