For a suitably chosen real constant a, let a function, f:R-{-a}→R be defined by f(x)=(a-x)(a+x) . Further suppose that for any real number x≠-aandf(x)≠-a,(fof)(x)=x. Then f(-12) is equal to:
Finding the value of f-12:
Given that f:R-{-a}→R and f(x)=(a-x)(a+x)
f(x)=(a-x)(a+x)⇒f(f(x))=(a-f(x)(a+f(x)=x⇒(a-ax)(1+x)=f(x)=(a-x)(a+x)⇒a(1-x)(1+x)=(a-x)(a+x)⇒(a-ax)(a+x)=(a-x)(1+x)⇒a2+ax-a2x-ax2=a+ax-x-x2⇒x2(1-a)+x(1-a)(1+a)+a(a-1)=0⇒(1-a)(x2+x(1+a)-a)=0⇒a=1
So, f(x)=(1-x)(1+x)
f(-12)=3
Hence the value of f(-12) is 3.