The correct option is B ⎡⎢⎣010001−12−4⎤⎥⎦
H(s)=Y(s)U(s)=3(s−2)s3+4s2−2s+1
Y(s)X1(s).X1(s)U(s)=3(s−2)(1S3+4s2−2s+1)
Let,
X1(s)U(s) = 1s3+4s2−2s+1
S3x1(s)+4s2x1(s)−2sx1(s)+x1(s)=u(s)
Replacing ′s′ by ddt,
d3x1dt2+4d2x1dt2−2dx1dt+x1=u(t)......(i)
Let,
dx1dt = x2=˙x1
d2x1dt = ˙x2=x3
Replacing equation (i),
˙x3+4x3−2x2+x1=u(t)
˙x3=−x1+2x2−4x3+u(t)
˙x1=x2
˙x2=x3
˙x3 = -x1+2x2−4x3+u(t)
⎡⎢⎣˙x1˙x2˙x3⎤⎥⎦ = ⎡⎢⎣010001−12−4⎤⎥⎦ ⎡⎢⎣x1x2x3⎤⎥⎦ + ⎡⎢⎣001⎤⎥⎦u(t)
So,A=⎡⎢⎣010001−12−4⎤⎥⎦