For all positive integers n, show that
2nCn+2nCn−1=12(2n+2Cn+1)
L.H.S.,= 2nCn+ 2nCn−1=2n!n!n!+2n!(n−1)!(2n−n+1)!=(2n)!n(n−1)!n!+(2n)!(n−1)!(n+1)n!=(2n)!n(n−1)!n!+(2n)!(n−1)!(n+1)n!=(2n)!n(n−1)!n!+[1n+1n+1]=(2n)!n!(n−1)![1n+1n+1]=(2n)!n!(n−1)![2n+1n(n+1)]=(2n+1)!n!(n+1)!RHS=122n+2Cn+1=12[(2n+2)!(n+1)!(2n+2−n−1)!]=12[(2n+2)!(n+1)!(n+1)!]
=12[(2n+2)!(n+1)n!(n+1)!]=12[2(n+1)(2n+1)!(n+1)n!(n+1)!]=(2n+1)!n!(n+1)!∴LHS=RHS