For all real values of a0,a1,a2,a3 satisfying a0+a12+a23+α34=0, the equation a1x+a2x2+a2x+a3x3=0 has real root in the interval
(1+x+2x2)20 = a0+a1x+a2x2...................a40x40, If a0+a1+a2+a3..................a40=2a
a0−a1+a2−a3......................a40=2b. Find the value of a + b
If (1+ax+bx2)4=a0+a1x+a2x2+…+a8x8; a, b, a0, a1…a8ϵR and are such that a0+a1+a2≠0 and ∣∣ ∣∣a0a1a2a1a2a0a2a0a1∣∣ ∣∣=0, then