A) A=sin2θ+cos4θ=sin2θ+cos2θ(1−sin2θ)=1−sin22θ4
As 0≤sin22θ≤1⇒34≤1−sin22θ4≤1⇒Aϵ[34,1]
B) A=3cos2θ+sin4θ=sin4θ−3sin2θ+3
As 0≤sin2θ≤1 and 0≤sin4θ≤1
Therefore Aϵ[1,3]
C) A=sin2θ−cos4θ=1−cos2θ−cos4θ
As 0≤cos2θ≤1 and 0≤cos4θ≤1
Therefore, Aϵ[−1,1]
D) A=tan2θ+2cot2θ=sin2θcos2θ+2cos2θsin2θ=sin4θ+2cos4θsin2θcos2θ=1−2sin2θcos2θ+cos4θsin2θcos2θ=1−2sin2θcos2θ+sin2θ−sin2θcos2θsin2θcos2θ=sec2θcsc2θ(1+sin2θ−3sin2θcos2θ)
As sec2θcsc2θ≥√2
Therefore, A≥2√2