For all real values of x, the minimum value of 1−x+x21+x+x2 is
a) zero b)1 c) 3 d) 13
Let y=1−x+x21+x+x2
On differentiating w.r.t. x, we get
dydx=(1+x+x2)(−1+2x)−(1−x+x2)(1+2x)(1+x+x2)2=−1+2x−x+2x2−x2+2x3−1−2x+x+2x2−x2−2x3(1+x+x2)2=−2+2x2−2x2+2x2(1+x+x2)2=2x2−2(1+x+x2)=2(x2−1)(1+x+x2)2
Put dydx=0⇒x2=1⇒x=±1
Now, d2ydx2=2(1+x+x2)2(2x)−(x2−1)(2)(1+x+x2)(1+2x)(1+x+x2)4
=4(1+x+x2)(1+x+x2)x−(x2−1)(1+2x)(1+x+x2)4=4[x+x2+x3−x2−2x3+1+2x](1+x+x2)=4(1+3x−x3)(1+x+x2)3
At x=1, (d2ydx2)x=1=4(1+3(1)−13)(1+1+12)3=4(3)33=49>0
At x=-1, (d2ydx2)x=1=4(1+3(−1)−(−1))3[1+(−1)+(−1)2]3=4(1−3+1)(1−1+1)3=4(−1)=−4<0
∴ By second derivative test, f is minimum at x=1 and the minimum value is given by y=1−1+11+1+1=13
Hence, (d) is the correct option.