wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For all real values of x, the minimum value of 1x+x21+x+x2 is

a) zero b)1 c) 3 d) 13

Open in App
Solution


Let y=1x+x21+x+x2
On differentiating w.r.t. x, we get
dydx=(1+x+x2)(1+2x)(1x+x2)(1+2x)(1+x+x2)2=1+2xx+2x2x2+2x312x+x+2x2x22x3(1+x+x2)2=2+2x22x2+2x2(1+x+x2)2=2x22(1+x+x2)=2(x21)(1+x+x2)2
Put dydx=0x2=1x=±1
Now, d2ydx2=2(1+x+x2)2(2x)(x21)(2)(1+x+x2)(1+2x)(1+x+x2)4
=4(1+x+x2)(1+x+x2)x(x21)(1+2x)(1+x+x2)4=4[x+x2+x3x22x3+1+2x](1+x+x2)=4(1+3xx3)(1+x+x2)3
At x=1, (d2ydx2)x=1=4(1+3(1)13)(1+1+12)3=4(3)33=49>0
At x=-1, (d2ydx2)x=1=4(1+3(1)(1))3[1+(1)+(1)2]3=4(13+1)(11+1)3=4(1)=4<0
By second derivative test, f is minimum at x=1 and the minimum value is given by y=11+11+1+1=13
Hence, (d) is the correct option.


flag
Suggest Corrections
thumbs-up
17
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Conjugate of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon