For all real x, the minimum value of 1−x+x21+x+x2 is
Let z=1−x+x21+x+x2
⇒z+zx+zx2=1−x+x2
⇒zx2−x2+zx+x+z−1=0
⇒x2(z−1)+x(z+1)+(z−1)=0
For real x, B2−4AC≥0
⇒(z+1)2−4(z−1)(z−1)≥0
⇒z2+2z+1−4z2+8z−4≥0
⇒−3z2+10z−3≥0⇒−3z2+9z+z−3≥0
⇒−3z(z−3)+1(z−3)≥0
⇒(z−3)(−3z+1)≥0⇒13≤z≤3
∴ minimum value of z=13