For all the values of x, the minimum value of 1−x+x21+x+x2 is
0
1
3
1/3
Let y=1−x+x21+x+x2
⇒yϵ[13,3]⇒minimum of y=13
For all real values of x, the minimum value of 1−x+x21+x+x2 is a) zero b)1 c) 3 d) 13
For all real values of x, the minimum value of is
(A) 0 (B) 1
(C) 3 (D)