wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For all θ in [0,π2] Prove that cos(sinθ)>sin(cosθ)

Open in App
Solution

θϵ[0,π2]
Now cos(sinθ)>sin(cosθ)
sin(π/2sinθ)>sin(cosθ)
Now we have to prove π2sinθ>cosθ θ[0,π/2]
Let f(θ)=π/2sinθcosθ be a function. Then
f(θ)=π22(12sinθ+12cosθ)
f(θ)=π22sin(π4+θ)
0θπ2
π4(θ+π4)3π4
or 12sin(θ+π4)1
or f(θ)=π22sin(π4+θ)>0 θϵ[0,π2]
or π2sinθcosθ>0
or π2sinθ>cosθ
or sin(π2sinθ)>sin(cosθ)
or cos(sinθ)>sin(cosθ) θϵ[0,π2]
Ans: 5

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon