θϵ[0,π2]
Now cos(sinθ)>sin(cosθ)
⇒ sin(π/2−sinθ)>sin(cosθ)
Now we have to prove π2−sinθ>cosθ ∀θ[0,π/2]
Let f(θ)=π/2−sinθ−cosθ be a function. Then
f(θ)=π2−√2(1√2sinθ+1√2cosθ)
f(θ)=π2−√2sin(π4+θ)
∵ 0≤θ≤π2
∴ π4≤(θ+π4)≤3π4
or 1√2≤sin(θ+π4)≤1
or f(θ)=π2−√2sin(π4+θ)>0 ∀θϵ[0,π2]
or π2−sinθ−cosθ>0
or π2−sinθ>cosθ
or sin(π2−sinθ)>sin(cosθ)
or cos(sinθ)>sin(cosθ) θϵ[0,π2]
Ans: 5