1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Domain
For all θ i...
Question
For all
θ
in
[
0
,
π
/
2
]
, show that
cos
(
sin
θ
)
>
sin
(
cos
θ
)
.
Open in App
Solution
c
o
s
(
s
i
n
θ
)
7
s
i
n
(
c
o
s
θ
)
+
θ
ϵ
(
0
,
π
2
)
c
o
s
(
s
i
n
θ
)
7
c
o
s
(
π
2
−
c
o
s
θ
)
>
0
2
s
i
n
(
π
4
+
1
2
(
s
i
n
θ
−
c
o
s
θ
)
)
]
=
s
i
n
[
π
4
−
1
2
(
s
i
n
θ
−
c
o
s
θ
)
]
>
0
→
|
s
i
n
θ
−
c
o
s
θ
|
=
∣
∣
∣
√
2
s
i
n
(
π
4
)
∣
∣
∣
≤
√
2
<
π
2
−
π
2
<
(
s
i
n
θ
−
c
o
s
θ
)
<
π
2
−
π
4
<
s
i
n
θ
−
c
o
s
θ
2
<
π
4
0
<
π
4
+
1
2
(
s
i
n
θ
−
c
o
s
θ
)
<
π
4
∴
s
i
n
[
π
4
+
1
2
(
s
i
n
(
θ
)
−
c
o
s
θ
)
]
>
0
proved
c
o
s
(
s
i
n
θ
)
7
s
i
n
(
c
o
s
θ
)
Suggest Corrections
0
Similar questions
Q.
Solve
cos
(
sin
θ
)
=
sin
(
cos
θ
)
.
Q.
Real part of
e
e
i
θ
is