wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For all θ in [0,π/2], show that cos(sinθ)>sin(cosθ).

Open in App
Solution

cos(sinθ)7sin(cosθ)+θϵ(0,π2)
cos(sinθ)7cos(π2cosθ)>0
2sin(π4+12(sinθcosθ))]=sin[π412(sinθcosθ)]>0
|sinθcosθ|=2sin(π4)2<π2
π2<(sinθcosθ)<π2
π4<sinθcosθ2<π4
0<π4+12(sinθcosθ)<π4
sin[π4+12(sin(θ)cosθ)]>0
proved cos(sinθ)7sin(cosθ)

1114534_1139221_ans_0423998a2c924438be6dc22a84c60751.jpeg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon