For all x∈(0,1)
ex<1+x
loge(1+x)<x
sinx>x
logex>x
The explanation of the correct option :
Let g(x)=log(1+x)−x then
g'(x)=11+x-1=-x1+x<0,∀x∈(0,1)
g(x) is decreasing on (0,1).
∴x>0
We have g(x)<g(0)
⇒loge(1+x)−x<0⇒loge(1+x)<x
Hence, the correct option is (B).