For all yϵR, f(y)=∣∣ ∣ ∣∣1yy+12yy(y−1)y(y+1)3y(y−1)y(y−1)(y−2)y(y2−1)∣∣ ∣ ∣∣, then ∫π/2−π/2f(y2+2)dy equals to
∀y∈R, f(y) =∣∣ ∣ ∣∣1yy+12yy(y−1)y(y+1)3y(y−1)y(y−1)(y−2)y(y2−1)∣∣ ∣ ∣∣ ,then ∫π/2−π/2f(y2+2)dy equals
If tan−1 x+tan−1 y=4π5,then cot−1 x+cot−1 y equals to
(a) π5 (b) 2π5 (c) 3π5 (d) π
If -1+√−3=reiθ, then θ is equal to