For an increasing A.P. a1,a2,a3...an,
if a1+a3+a5=−12 and a1⋅a3⋅a5=80, then which of the following is true.
a5=+2
a1+a3+a5=−12
a+a+2d+a+4d=−12
a+2d=−4
a1⋅a3⋅a5=80
a(a+2d)(a+4d)=80
(a)(−4)(a+4d)=80
a(a+4d)=−20
(−4−2d)(−4+2d)=−20
4d2−16=20
d=±3⇒d=+3
Hence a=−10
So, a5=2