The correct option is D 6m + 5
Let a be any positive integer.
By Euclid’s division lemma,
a = bq + r
a = 6q + r (when b = 6)
So, r can be 0, 1, 2, 3, 4, 5.
Case 1:
∴ a = 6q (When r = 0)
⇒ a2=36q2
⇒ a2=6(6q2)=6m (Where m=6q2)
Case 2:
∴ a=6q+1 (When r = 1)
⇒ a2=(6q+1)2
⇒ a2=36q2+12q+1=6(6q2+2q)+1
⇒ a2=6m+1 (Where m=6q2+2q)
Case 3:
∴ a = 6q + 2 (When r = 2)
⇒ a2=(6q+2)2
⇒a2=36q2+24q+4=6(6q2+4q)+4
⇒ a2=6m+4 (Where m=6q2+4q)
Case 4:
∴ a = 6q + 3 (When r = 3)
⇒ a2=(6q+3)2
⇒ a2=36q2+36q+9=36q2+36q+6+3=6(6q2+6q+1)+3
⇒ a2=6m+4 (Where m=6q2+8q+2)
Case 6:
∴ a = 6q + 5 (When r = 5)
⇒a2=(6q+5)2
⇒ a2=36q2+60q+25=36q2+60q+24+1=6(6q2+10q+4)+1
⇒ a2=6m+1 (Where m=6q2+10q+4)
Similarly, for a = bq + r at b = 5 and r = 2
∴ a = 5q + 2
⇒a2=(5q+2)2
⇒ a2=25q2+20q+4=5(5q2+4q)+4
⇒ a2=5m+4 (Where m=5q2+4q)
and at b = 4 and r = 1
∴ a = 4q + 1
⇒ a2=(4q+1)2=16q2+8q+1=4(4q2+2q)+1
⇒ a2=4m+1 (Where m=4q2+2q)
From, these cases, this can be concluded that square of any positive number cannot be of the form 6m + 5.
Hence, the correct answer is option (d).