wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any a, b, x, y > 0, prove that:
23tan-13ab2-a3b3-3a2b+23tan-13xy2-x3y3-3x2y=tan-12αβα2-β2
where α = − ax + by, β = bx + ay

Open in App
Solution

Let a=btanm and x=ytann
Then,

23tan-13ab2-a3b3-3a2b+23tan-13xy2-x3y3-3x2y=23tan-13b3tanm-b3tan3mb3-3b3tan2m+23tan-13y3tann-y3tan3ny3-3y3tan2n=23tan-13tanm-tan3m1-3tan2m+23tan-13tann-tan3n1-tan2n=23tan-1tan3m+23tan-1tan3n tan3x=3tanx-tan3x1-3tan2x=233m+233n =2m+2n=2tan-1ab+tan-1xy a=btanm, x=ytann=2tan-1ab+xy1-abxy=2tan-1ay+bxby-ax=tan-12ay+bxby-ax1-ay+bxby-ax2=tan-12ay+bxby-axby-ax2-ay+bx2=tan-12αβα2-β2 β=ay+bx and α=by-ax

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Fundamental Theorem of Calculus
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon