wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any complex numbers z,z1 and z2 prove that:
(i) arg(¯z)=arg(z)
(ii) arg(z1z2)=arg(z1)+arg(z2)
(iii) arg(z1¯z2)=arg(z1)arg(z2)
(iv) arg(z1z2)=arg(z1)arg(z2)

Open in App
Solution

(i)Letz=r(cosθ+isinθ).Then,|z|=rand arg(z)=θ.Now,z=r(cosθ+isinθ)Complex numbers and quadratic Equationsz=rcosθ+i(rsinθ)¯z=rcosθ=i(rsinθ)=r(cosθisinθ)=r{cos(θ)+isin(θ)}hence, arg(¯z)=arg(z).(ii)Letz1=r1(cosθ1+issinθ1)andz2=r2(cosθ2+isinθ2).then|z1|=r1,arg(z1)=θand|z2|=r2,arg(z2)=θ2.z1z2=r1(cosθ1+isinθ1).r2(cosθ2+isinθ2)=r1r2{(cosθ1cosθ1sinθ1sinθ2)+i(sinθ1cosθ2+cosθ2+cosθ1sinθ2)}=r1r2{cos(θ1+θ2)+isin(θ1+θ2)}arg(z1z2)=(θ1+θ2)+isin(θ1+θ2).REMARKS((I) Note here that)|z1z2|=r1r2=|z1||z2|.(II) In general, we have|z1z2zn|=|z1|.|z2||zn|Let arg(z1z2zn)=arg(z1)+arg(z2)++arg(zn).(iii) Let z1=r1(cosθ1+isinθ1)andz2=r2(cosθ2+isinθ2).then,¯z2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯r2cosθ+i(r2sinθ2)=r2cosθ2i(r2sinθ2)¯z2=r2{cos(θ2)+isin(θ2)}.z1¯z2=r1(cosθ1+isinθ1).r2{cos(θ2)+isin(θ2)}=r1r2(cosθ1+isinθ1){cos(θ2)+isin}(θ2)=r1r2[cos{θ1+(θ2)}+isin{θ1+(θ2)}]=r1r2{cos(θ1θ2)+isin(θ1θ2)}.Hence, arg(z1¯z2)=(θ1θ2)+=arg(z1)arg(z2)Letz1=r1(cosθ1+isinθ1)andz2=r2(cosθ2+isinθ2)then,|z1|=r1,|z2|=r2,arg(z1)=θ1and arg(z2)=θ2.z1z2=r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)×(cosθ2isinθ2)(cosθ2isinθ2)=r1r2.{(cosθ1.cosθ2sinθ1.sinθ2)+i(sinθ1.cosθ2cosθ1.sinθ2)(cos2θ2+sin2θ2)}=r1r2.{cos(θ1θ2)+isin(θ1θ2)}arg(z1z2)=(θ1θ2)=arg(z1)arg(z2.)Hence, arg(z1z2)=arg(z1)arg(z2)


flag
Suggest Corrections
thumbs-up
1
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
General Solutions
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon