For any complex numbers z,z1 and z2 prove that:
(i) arg(¯z)=−arg(z)
(ii) arg(z1z2)=arg(z1)+arg(z2)
(iii) arg(z1¯z2)=arg(z1)−arg(z2)
(iv) arg(z1z2)=arg(z1)−arg(z2)
(i)Letz=r(cosθ+isinθ).Then,|z|=rand arg(z)=θ.Now,z=r(cosθ+isinθ)Complex numbers and quadratic Equations⇒z=rcosθ+i(rsinθ)⇒¯z=rcosθ=i(rsinθ)=r(cosθ−isinθ)=r{cos(−θ)+isin(−θ)}hence, arg(¯z)=−arg(z).(ii)Letz1=r1(cosθ1+issinθ1)andz2=r2(cosθ2+isinθ2).then|z1|=r1,arg(z1)=θand|z2|=r2,arg(z2)=θ2.∴z1z2=r1(cosθ1+isinθ1).r2(cosθ2+isinθ2)=r1r2{(cosθ1cosθ1−sinθ1sinθ2)+i(sinθ1cosθ2+cosθ2+cosθ1sinθ2)}=r1r2{cos(θ1+θ2)+isin(θ1+θ2)}⇒arg(z1z2)=(θ1+θ2)+isin(θ1+θ2).REMARKS((I) Note here that)|z1z2|=r1r2=|z1||z2|.(II) In general, we have|z1z2⋯zn|=|z1|.|z2|⋯|zn|Let arg(z1z2⋯zn)=arg(z1)+arg(z2)+⋯+arg(zn).(iii) Let z1=r1(cosθ1+isinθ1)andz2=r2(cosθ2+isinθ2).then,¯z2=¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯¯r2cosθ+i(r2sinθ2)=r2cosθ2−i(r2sinθ2)⇒¯z2=r2{cos(−θ2)+isin(−θ2)}.∴z1¯z2=r1(cosθ1+isinθ1).r2{cos(−θ2)+isin(−θ2)}=r1r2(cosθ1+isinθ1){cos(−θ2)+isin}(−θ2)=r1r2[cos{θ1+(−θ2)}+isin{θ1+(−θ2)}]=r1r2{cos(θ1−θ2)+isin(θ1−θ2)}.Hence, arg(z1¯z2)=(θ1−θ2)+=arg(z1)−arg(z2)Letz1=r1(cosθ1+isinθ1)andz2=r2(cosθ2+isinθ2)then,|z1|=r1,|z2|=r2,arg(z1)=θ1and arg(z2)=θ2.∴z1z2=r1(cosθ1+isinθ1)r2(cosθ2+isinθ2)×(cosθ2−isinθ2)(cosθ2−isinθ2)=r1r2.{(cosθ1.cosθ2−sinθ1.sinθ2)+i(sinθ1.cosθ2−cosθ1.sinθ2)(cos2θ2+sin2θ2)}=r1r2.{cos(θ1−θ2)+isin(θ1−θ2)}⇒arg(z1z2)=(θ1−θ2)=arg(z1)−arg(z2.)Hence, arg(z1z2)=arg(z1)−arg(z2)