wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any constant a, find the derivative of xnanxa.

Open in App
Solution

ddx(xnanxa) where a is arbitary constant
we can use the chain rule to differentiate
d(I.II)=Id(II)+IId(I)
ddx(xnanxa)=
{ddx(xn)=nxn1}
=(xnan)ddx(1xa)+1(xa)ddx(xnan)
=(xnan)[1(xa)2]+1(xa)[nxn1=0]
(xnan)(xa)2+nxn1(xa)
nxn1(xa)=(xnan)(xa)2.

1174581_1197829_ans_366e53a648014cc090fd9525c6bff938.jpg

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sum of Binomial Coefficients of Even Numbered Terms
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon