For any differentiable function y of x, d2xdy2(dydx)3+d2ydx2=
A
0
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
−y
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
x
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution
The correct option is C0 dydx=(dxdy)−1⇒d2ydx2=−1(dxdy)−2{ddx(dxdy)} ⇒d2ydx2=(−1)(dxdy)−2{ddy(dxdy)dydx} =(−1)(dydx)2{d2xdy2⋅dydx}=−(dydx)3{d2xdy2} ⇒d2xdy2(dydx)3+d2ydx2=0.