For any four points P,Q,R,S,
|−−→PQ×−−→RS−−−→QR×−→PS+−−→RP×−−→QS| is equal to 4 times the area of the triangle
Let →a,→b,→c,→d be the position vectors of points P,Q,R and S respectively.
Then, −−→PQ×−−→RS=(→b−→a)×(→d−→c)=→b×→d−→b×→c+→d×→a−→c×→a−−→QR×−→PS=(→c−→b)×(→d−→a)=→c×→d−→c×→a−→b×→d−→a×→b−−→RP×−−→QS=(→a−→c)×(→d−→b)=→a×→d−→a×→b−→c×→d−→b×→c−−→PQ×−−→RS−−−→QR×−→PS+−−→RP×−−→QS=→b×→d−→b×→c+→d×→a−→c×→a−→c×→d+→c×→a+→b×→d+→a×→b+→a×→d−→a×→b−→c×→d−→b×→c=2(→b×→d)−2(→b×→c)−2(→c×→d)=2{→b×→d+→c×→b+→d×→c}
=2(−−→QS×−−→QR)=4 area of △QSR