wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any odd integer n1, prove that
n3(n1)3+......+(1)n113=14(n+1)2(2n1)

Open in App
Solution

n is an odd integer (1)n1=1 for n=1
n3,n5,n6,...
n3(n1)3+(n2)3(n3)3+...+(1)n1.1
=n3+(n1)3+(n2)32[(n1)3+(n3)3+...23]
=n3+(n1)3+(n2)32×23[(n1)323+(n3)323+...+1]
n1,n3 are even integers.
=14n2(n+1)216(n1)2(n+1)216×4
=14(n+1)2[(n)2(n1)2]
=14(n+1)2(2n1)

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Laws of Exponents
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon