The correct option is B (−∞,−D4a]
Given : y=ax2+bx+c,a<0
y=a(x2+bax+ca)
y=a(x2+2.b2ax+b24a2−b24a2+ca)
y=a((x+b2a)2−b24a2+4ac4a2)
y=a((x+b2a)2−(b24a2−4ac4a2))
y=a((x+b2a)2−(b2−4ac4a2))
y=a((x+b2a)2−(D4a2))
Therefore the maximum value occurs when
x+b2a=0
⇒x=−b2a
and at this point ymax is −D4a
And y→−∞ as x→±∞
∴Range∈(−∞,−D4a]