For any real number x, let [x] denote the largest integer less than or equal to x. Let f be a real valued function defined on the interval [–10,10] by f(x)={{x}if [x] is odd,1−{x}if [x] is even, . Then the value of pi21010∫−10f(x)cosπxdx is
Open in App
Solution
f(x)={x−[x]if [x] is odd,1+[x]−xif [x] is even,
f(x) and cosπx are both periodic with period 2 and are both even. ∴10∫−10f(x)cosπxdx=210∫0f(x)cosπxdx =102∫0f(x)cosπxdx 1∫0f(x)cosπxdx=1∫0(1−x)cosπxdx=−1∫0ucosπudu 2∫1f(x)cosπxdx=2∫1(x−1)cosπxdx=−1∫0ucosπudu ∴10∫−10f(x)cosπxdx=−201∫0ucosπudu =40π2 ⇒π21010∫−10f(x)cosπxdx=4