For any sets A and B, prove that
(A×B)∩(B×A)=(A∩B)×(B∩A).
Let (a, b) be an arbitrary element of (A×B)∩(B×A). Then,
(a,b)ϵ(A×B)∩(B×A)⇒(a,b)ϵA×B and (a,b)ϵB×A
⇒(aϵA and bϵB) and ⇒(aϵB and bϵA)
⇒(aϵA and aϵB) and ⇒(bϵB and bϵA)
⇒aϵ(A∩B) and bϵ(B∩A)
⇒(a,b)ϵ(A∩B)×(B∩A)
∴(A×B)∩(B×A)⊆(A∩B)×(B∩A)……(i)
Again, let (x, y) be an arbitrary element of (A∩B)×(B∩A). Then,
(x,y)ϵ(A∩B)×(B∩A)⇒xϵA∩B and yϵB∩A
⇒(x,y)ϵ(A∩B)×(B∩A)⇒xϵA∩B and yϵB∩A
⇒(xϵA and xϵB) and yϵB and yϵA
⇒(xϵA and yϵB) and xϵB and yϵA
⇒(x,y)ϵA×B and (x,y)ϵB×A
⇒(x,y)ϵ(A×B)∩(B×A)
∴(A∩B)×(B∩A)⊆(A×B)∩(B×A)……(ii)
Thus, from (i) and (ii), we get
(A×B)∩(B×A)=(A∩B)×(B×A).