Part 1 :
Let X∈P(A∩B)
⇒X⊂A∩B
So, X⊂A and X⊂B
∴X∈P(A) and X∈P(B)
⇒X∈P(A∩B)
⇒P(A∩B)⊂P(A)∩P(B)⋯(i)
Part 2 :
Let Y∈P(A)∩P(B)
⇒Y∈P(A) and Y∈P(B)
⇒Y⊂A and Y⊂B
∴Y⊂A∩B
⇒Y∈P(A∩B)
i.e., Y∈P(A)∩P(B)⇒Y∈P(A∩B)
So, P(A)∩P(B)⊂P(A∩B)⋯(ii)
From (i) and (ii),
P(A∩B)=P(A)∩P(B)
Hence proved.