wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any θϵ(π4,π2), the expression 3(sinθcosθ)4+6(sinθ+cosθ)2+4sin6θ equals.

A
134cos6θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
134cos4θ+2sin2θcos2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
134cos2θ+6cos4θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
134cos2θ+6sin2θcos2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
Open in App
Solution

The correct option is A 134cos6θ
We have,
S=3(sinθcosθ)4+6(sinθ+cosθ)2+4sin6θ
(sinθcosθ)4=((sinθcosθ)2)2=(sin2θ+cos2θ2sinθcosθ)2
(sinθ+cosθ)2=(sin2θ+cos2θ+2sinθcosθ)
2sinθcosθ=sin2θ
S=3(1sin2θ)2+6(1+sin2θ)+4sin6θ
=3(12sin2θ)+sin22θ)+6+6sin2θ+4sin6θ
=9+12sin2θcos2θ+4(1cos2θ)3
(1=cos2θ)3=1cos6θ3cos2θ(1cos2θ)
=1cos6θ3cos2θsin2θ
S=9+12sin2θcos2θ+4(1cos6θ3cos2θsin2θ)
=134cos6θ.

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Multiple and Sub Multiple Angles
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon