wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any θ(π4,π2), the expression 3(sinθcosθ)4+6(sinθ+cosθ)2+4sin6θ equals:

A
134cos2θ+6sin2θcos2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
B
134cos2θ+6cos4θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
C
134cos4θ+2sin2θcos2θ
No worries! We‘ve got your back. Try BYJU‘S free classes today!
D
134cos6θ
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct option is D 134cos6θ
3(sinθcosθ)4+6(sinθ+cosθ)2+4sin6θ
=3(1sin2θ)2+6(1+sin2θ)+4sin6θ
=3(1+sin22θ2sin2θ)+6(1+sin2θ)+4sin6θ
=3+3sin22θ6sin2θ+6+6sin2θ+4sin6θ
=9+4sin6θ+3sin22θ
=9+44+4sin6θ+3×(2sinθcosθ)2
=13+4(sin6θ1)+12sin2θcos2θ
=13+4(sin2θ1)(sin4θ+sin2θ+1)+12sin2θcos2θ
=134cos2θ(sin4θ+sin2θ+1)+12sin2θcos2θ
=134cos2θ(sin4θ+sin2θ+13sin2θ)
=134cos2θ(sin4θ2sin2θ+1)
=134cos2θ(1sin2θ)2
=134cos2θcos4θ
=134cos6θ





flag
Suggest Corrections
thumbs-up
2
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon