For any three angles A, B, C prove that sinA+sinB+sinC−sin(A+B+C)=4sin{(A+B)/2}sin{(B+C)/2}sin{(C+A)/2}.
Open in App
Solution
Note: Here A, B, C are not angles of a triangle i.e. A+B+C≠180o. Combining the first two and last two, we get L.H.S. =2sinA+B2cosA−B2+2cosA+B+2C2sin(−A+B2) =2sinA+B2[cosA−B2−cosA+B+2C2] ∵sin(−θ)=−sinθ. =2sinA+B2[2sinA+C2sinB+C2] =4sinA+B2sinB+C2sinC+A2.