1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Invertible Element Binary Operation
For any three...
Question
For any three sets A, B and C
(a)
A
∩
B
-
C
=
A
∩
B
-
A
∩
C
(b)
A
∩
B
-
C
=
A
∩
B
-
C
(c)
A
∪
B
-
C
=
A
∪
B
∩
A
∪
C
'
(d)
A
∪
B
-
C
=
A
∪
B
-
A
∪
C
.
Open in App
Solution
(a)
A
∩
B
-
C
=
A
∩
B
-
A
∩
C
Let x be any arbitrary element of A
∩
B
-
C
.
Thus, we have,
x
∈
A
∩
B
-
C
⇒
x
∈
A
and x
∈
B
-
C
⇒
x
∈
A
a
n
d
x
∈
B
a
n
d
x
∉
C
⇒
x
∈
A
a
n
d
x
∈
B
a
n
d
x
∈
A
a
n
d
x
∉
C
⇒
x
A
∩
B
a
n
d
x
∉
A
∩
C
⇒
x
∈
A
∩
B
-
A
∩
C
⇒
A
∩
B
-
C
⊆
A
∩
B
-
A
∩
C
Similarly
,
A
∩
B
-
A
∩
C
⊆
A
∩
B
-
C
Hence
,
A
∩
B
-
C
=
A
∩
B
-
A
∩
C
Suggest Corrections
0
Similar questions
Q.
For any two sets A and B,
A
-
B
∪
B
-
A
=
(a)
A
-
B
∪
A
(b)
B
-
A
∪
B
(c)
A
∪
B
-
A
∩
B
(d)
A
∪
B
∩
A
∩
B
.
Q.
For three sets
A
,
B
and
C
,
A
∩
(
B
−
C
)
=
Q.
The set (A ∪ B ∪ C) ∩ (A ∩ B′ ∩ C′)′ ⋃ C′ is equal to
(a) B ∩ C′
(b) A ∩ C
(c) B ∪ C′
(d) A ∩ C′