Let,
z 1 = x 1 +i y 1 and z 2 = x 2 +i y 2
Therefore,
z 1 z = 2 ( x 1 +i y 1 )( x 2 +i y 2 ) = x 1 x 2 +i x 1 y 2 +i x 2 y 1 + i 2 y 1 y 2 =( x 1 x 2 − y 1 y 2 )+i( x 1 y 2 − x 2 y 1 )
Now,
Re( z 1 z 2 )= real part of z 1 z 2
=( x 1 x 2 − y 1 y 2 )
=Re z 1 ·Re z 2 −Im z 1 ·Im z 2
Hence, Re( z 1 z 2 )=Re z 1 ·Re z 2 −Im z 1 ·Im z 2 has been verified.
For any two complex numbers z1 and z2 prove that
Re(z1z2)=Re(z1)Re(z2)−Im(z1)Im(z2)