wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any two complex numbers z 1 and z 2 , prove that Re (z 1 z 2 ) = Re z 1 Re z 2 – Im z 1 Im z 2

Open in App
Solution

Let,

z 1 = x 1 +i y 1 and z 2 = x 2 +i y 2

Therefore,

z 1 z = 2 ( x 1 +i y 1 )( x 2 +i y 2 ) = x 1 x 2 +i x 1 y 2 +i x 2 y 1 + i 2 y 1 y 2 =( x 1 x 2 y 1 y 2 )+i( x 1 y 2 x 2 y 1 )

Now,

Re( z 1 z 2 )= real part of z 1 z 2

=( x 1 x 2 y 1 y 2 )

=Re z 1 ·Re z 2 Im z 1 ·Im z 2

Hence, Re( z 1 z 2 )=Re z 1 ·Re z 2 Im z 1 ·Im z 2 has been verified.


flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Algebra of Complex Numbers
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon