1
You visited us
1
times! Enjoying our articles?
Unlock Full Access!
Byju's Answer
Standard XII
Mathematics
Properties of Modulus
For any two c...
Question
For any two complex numbers
z
1
,
z
2
and any real numbers a and b,
|
a
z
1
−
b
z
2
|
2
+
|
b
z
1
+
a
z
2
|
2
=
(
a
2
+
b
2
)
(
|
z
1
|
2
+
|
z
2
|
2
)
. If this is true enter 1, else enter 0.
Open in App
Solution
|
a
z
1
−
b
z
2
|
2
+
|
b
z
1
+
a
z
2
|
2
=
(
a
z
1
−
b
z
2
)
(
a
¯
z
1
−
b
¯
z
2
)
+
(
a
z
1
+
b
z
2
)
(
a
¯
z
1
+
b
¯
z
2
)
=
a
2
|
z
1
|
2
−
a
b
z
1
¯
z
2
−
a
b
z
2
¯
z
1
+
b
2
|
z
2
|
2
+
a
2
|
z
1
|
2
+
a
b
z
1
¯
z
2
+
a
b
z
2
¯
z
2
+
b
2
|
z
2
|
2
⇒
|
a
z
1
−
b
z
2
|
2
+
|
b
z
1
+
a
z
2
|
2
=
(
a
2
+
b
2
)
(
|
z
1
|
2
+
|
z
2
|
2
)
Ans: 1
Suggest Corrections
0
Similar questions
Q.
For any two complex numbers
z
1
,
z
2
and any two real numbers
a
,
b
show that
|
a
z
1
−
b
z
2
|
2
+
|
b
z
1
+
a
z
2
|
2
=
(
a
2
+
b
2
)
(
|
z
1
|
2
+
|
z
2
|
2
)
.
Q.
State True and False
For any two complex numbers
z
1
,
z
2
and any real numbers a and b,
|
a
z
1
−
b
z
2
|
2
+
|
b
z
1
+
a
z
2
|
2
=
(
a
2
+
b
2
)
[
|
z
1
|
2
+
|
z
2
|
2
]
.
Type 1 for true and 0 for false
Q.
For any two complex number
z
1
,
z
2
and any two real numbers
a
and
b
,
|
a
z
1
−
b
z
2
|
2
+
|
b
z
1
+
a
z
2
|
2
=
Q.
For any two complex numbers
z
1
and
z
2
any real numbers and
|
(
a
z
1
−
b
z
2
)
|
2
+
|
b
z
1
+
a
z
2
|
2
=
Q.
For any two complex numbers
z
1
z
2
and any two real numbers a and b
|
a
z
1
−
b
z
2
|
2
+
|
b
z
1
+
a
z
2
|
2
=