The correct option is C |x+y|≥|x|+|y|
Given two real numbers x & y.
To find the relationship between |x|,|y| & |x+y|
Let's consider the case where x,y≥0
⇒|x|=x & |y|=y
Also, |x+y|=x+y=|x|+|y|
⇒|x+y|=|x|+|y| ∀ x,y≥0
Let's consider the case where x≥0 & y<0
⇒|x|=x & |y|=−y
⇒|x|+|y|=x+(−y)
Whose value is greater than |x+y|
⇒|x+y|<|x|+|y| ∀ x≥0,y<0
Let's consider the case where x,y≤0
⇒|x|=−x & |y|=−y
⇒|x|+|y|=−x+(−y)
Also, |x+y|=−(x+y)=|x|+|y|
⇒|x+y|=|x|+|y| ∀ x,y≤0
Thus for any real number x,y
|x+y|≤|x|+|y|