For any two sets A and B, (A−B)∪(B−A)=
(A∪B)−(A∩B)
(A−B)∪(B−A)=(A∩B′)∪(B∩A′)
= [A∪(B∩A′)] ∩ [B′∪(B∩A′)]
[Using distribution law]
= [(A∪B)∩(A∪A′)] ∩ [B′∪B)∩(B′∪A] [Using distribution law]
= [(A∪B)∩(U)] ∩ [(U)∩(B′∪A]
[A∪A′=U=B′∪B]
= [A∪B] ∩(U) = (A∪B) and (U)∩(B′∪A′)=(B′∪A′)]
= [A∪B] ∩ [(A∩B)′]
[(A∩B)′=B′∪A′]
= [A∪B] ∩ [(A∪B)−(A∩B)]
= [(A∪B)−(A∩B)]