For any two sets A and B, prove that
(i) (A∪B)−B=A−B
(ii) A−(A∩B)=A−B
(iii) A−(A−B)=A∩B
(iv) A∪(B−A)=A∪B
(v) (A−B)∪(A∩B)=A
(i) B⊂A∪B
(ii) A∩B⊂A
(iii) A⊂B⇒A∩B=A