For any two sets A and B, prove that
(i) B⊂A∪B
(ii) A∩B⊂A
(iii) A⊂B⇒A∩B=A
(i) B⊂A∪B
Let xϵA
⇒x ϵ Aorx ϵ B⇒x ϵ A∪B
Hence , B⊂A∪B
(ii) A∩B⊂A
Let x ϵA∩B
⇒x ϵ A and x ϵ B ⇒ x ϵA
Hence, A∩B⊂A
(iii) A⊂B⇒A∩B=A
If A⊂B
Let x ϵ A∪B
⇒x ϵ Aor x ϵ B → x ϵB [∴A⊂B]
⇒A∪B⊂B ....(i)
But B⊂A∪B ....(ii)
From Eqs. (i) and (ii)
A∪B=B
If A∪B=B
Let y ϵ A
⇒ y ϵ A∪B⇒y ϵ B [∴A∪B=B]
⇒A⊂B
Hence, A⊂B⇔A∪B=B