For any two sets A and B, prove the following :
(i) A∩(A′∪B)=A∩B
(ii) A - (A - B) = A∩B.
(iii) A∩(A∪B)′=ϕ
(iv) A - B =AΔ(A∪B).
(i) LHS = A∩(A∪B)
= (A∩A′)∪(A∩B)
[∵∩ distributes over (i)]
= ϕ∪(A∩B) [∵A∩A′=ϕ]
= A∩B [∵ϕ∪x=x for any set x]
= RHS
∴ LHS = RHS Proved.
(ii) For any sets A and B we have By De-morgan's laws
(A∪B)′=A′∩B′,(A∩B)′=A′∪B′
Also,
LHS = A- (A - B)
= A∩(A−B)′
=A∩(A−B′)′
= A∩[A′∪(B′)]' [By De-morgan's laws]
= A∩(A′∪B) [∵(B′)′=B]
= (A∩A′)∪(A∩B)
= ϕ∪(A∩B) [∵A∩A′=ϕ]
= A∩B [∵ϕ∪x=x, for any set x]
= RHS
∴ LHS = RHS Proved.
(iii) LHS = A∩(A∪B′)
= A∩(A′∩B′) [By De-morgan's law]
= (A∩A′)∩B′ [By associative law]
= ϕ∩B′ [∵A∩A′=ϕ]
= ϕ
= RHS
∴ LHS = RHS Proved.
(iv) RHS = AΔ(A∩B)
= {A−(A∩B)} \(\cup (A \cap B - A)
[∵EΔF=(F−F)∪(F−E)]
= {A∩(A∩B)′] ∪(A∩B∩A′ } [∵E−F=E∩F′]
= { A∩(A′∩B′)] ∪(A∩A′∩B}
[By De-morgan's law and associative law]
= (A∩A′)∪(A∩B′)∪(ϕ∩B)
[∵∩ distributes over ∪ and A∩A′=ϕ]
= ϕ∪(A∩B′)∪ϕ [∵ϕ∩B=ϕ]
= A∩B′ [∵ϕ∪x=x for any set x]
= A - B [∵A∩B′=A−B]
= LHS
∴ LHS = RHS Proved.