Let us assume →a≠→0 and →b≠→0
we know, ∣∣→a+→b∣∣2
=∣∣→a∣∣2+2∣∣→a∣∣∣∣→b∣∣cos θ+∣∣→b∣∣2 (i)
We know that cos θ≤1
Multiplying 2∣∣→a∣∣∣∣→b∣∣ on both sides then we get,
2∣∣→a∣∣∣∣→b∣∣cos θ≤2∣∣→a∣∣∣∣→b∣∣
Adding ∣∣→a∣∣2+∣∣→b∣∣2 on both sides then we get,
∣∣→a∣∣2+∣∣→b∣∣2+2∣∣→a∣∣+∣∣→a∣∣cos θ≤∣∣→a∣∣2
∣∣→b∣∣2+2∣∣→a∣∣∣∣→b∣∣
∣∣→a+→b∣∣2≤(∣∣→a∣∣+∣∣→a∣∣2) Form (i)
Taking square root on both sides then we grt,
∣∣→a+→b∣∣≤(∣∣→a∣∣+∣∣→a∣∣2)
Hence, proved.