For any vector
→a, the value of (→a×^i)2+(→a×^j)2+(→a×^k)2 is(a)→a2 (b)3→a (c)4→a2 (d)2→a2
(d) Let
→a=x^i+y^j+z^k∴ →a2=x2+y2+z2∴ →a×^i=∣∣
∣
∣∣^i^j^kxyz100∣∣
∣
∣∣=^i[0]−^j[−z]+^k[−y]=z^j−y^k∴ (→a×^i)2=(z^j−y^k)(z^j−y^k)=y2+z2Similarly, (→a×^j)2=x2+z2and (→a×^k)2=x2+y2∴(→a×^i)2+(→a×^j)2+(→a×^k)2=y2+z2+x2+z2+x2+y2 =2(x2+y2+z2)=2→a2