The correct option is
D 2|→a|2Let,
→a=x^i+y^j+z^kAnd we know that, ^i×^j=^k,^j×^k=^i,^k×^i=^j
So,
∣∣→a×^i∣∣2+∣∣→a×^j∣∣2+∣∣→a×^k∣∣2=(→a×^i)2+(→a×^j)2+(→a×^k)2=[(x^i+y^j+z^k)×^i]2+[(x^i+y^j+z^k)×^j]2+[(x^i+y^j+z^k)×^k]2=(−y^k+z^j)2+(x^k−z^i)2+(−x^j+y^i)2
Here,
(−y^k+z^j)2=(√(−y)2+z2)2=y2+z2(x^k−z^i)2=(√x2+(−z)2)2=x2+z2(−x^j+y^i)2=(√(−x)2+y2)2=x2+y2
Putting these values we get from,
(−y^k+z^j)2+(x^k−z^i)2+(−x^j+y^i)2=y2+z2+x2+z2+x2+y2=2(x2+y2+z2)
Now, for the vector →a=x^i+y^j+z^k,
x2+y2+z2=|→a|2∴2(x2+y2+z2)=2|→a|2
Hence, the required value is 2|→a|2.