wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For any vector a=a1^i+a2^j+a3^k , prove that the value of |a×i|2+|a×j|2+|a×k|2=|2a|2.

Open in App
Solution

Consider the problem
Let a=a1^i+a2^j+a3^k
thus,
|a|=a21+a22+a23 ----- from (i)
Now,
a×^i=(a1^i+a2^j+a3^k)×^i

=a2^k+a3^j

|a×^i|2=a22+a32

a×^j=(a1^i+a2^j+a3^k)×^j=a1^ka3^i

|a×^j|2=a12+a32

a×^k=(a1^i+a2^j+a3^k)×^k=a1j+a2i

|a×^k|2=a12+a22
Now
|a×i|2+|a×j|2+|a×k|2

=a22+a23+a21+a23+a21+a22

=2[a21+a22+a23]

=2|a|2 from (i)

Hence prove .

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Properties of Conjugate of a Complex Number
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon