wiz-icon
MyQuestionIcon
MyQuestionIcon
1
You visited us 1 times! Enjoying our articles? Unlock Full Access!
Question

For a
positive integer n,
let
fn(θ)=(tanθ2)(1+secθ)(1+sec2θ)(1+sec22θ)...(1+sec2nθ),then

A
f2(π16)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
B
f3(π32)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
C
f4(π64)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
D
f5(π128)=1
Right on! Give the BNAT exam to get a 100% scholarship for BYJUS courses
Open in App
Solution

The correct options are
A f2(π16)=1
B f3(π32)=1
C f4(π64)=1
D f5(π128)=1
fn(θ)=(tanθ2)(1+secθ)(1+sec2θ)(1+sec22θ)(1+sec2nθ)
=sinθ2cosθ2×1+cosθcosθ×1+cos2θcos2θ×1+cos22θcos22θ×1+cos2nθcos2nθ
=sinθ2cosθ2×2cos2θ2cosθ×2cos2θcos2θ×2cos22θcos22θ××2cos2n1θcos22nθ
=(2sinθ2cosθ2)×(2cosθ)×(2cos2θ)××2cos2n1θcos2nθ
=(2sinθcosθ)×(2cos2θ)××2cos2n1θcos2nθ
=sin2nθcos2nθ=tan2nθ

f2(π16)=tan(22×π16)=tanπ4=1
f3(π32)=tan(23×π32)=tanπ4=1
f4(π64)=tan(24×π64)=tanπ4=1
f5(π128)=tan(25×π128)=tanπ4=1

flag
Suggest Corrections
thumbs-up
0
Join BYJU'S Learning Program
similar_icon
Related Videos
thumbnail
lock
Sine and Cosine Series
MATHEMATICS
Watch in App
Join BYJU'S Learning Program
CrossIcon