The correct options are
A Number of critical point of the curve is 2
B Global minimum value of f(x) is 5
C Global maximum value of f(x) is 7
D f(0)=5
d2ydx2=6x−4Integrating w.r.t. xdydx=3x2−4x+c
When x=1,dydx=0
0=3−4+c⇒c=1⇒dydx=3x2−4x+1⇒y=x3−2x2+x+c1x=1,y=5⇒c1=5⇒y=f(x)=x3−2x2+x+5
For critical points,
dydx=0⇒3x2−4x+1=0⇒(3x−1)(x−1)=0⇒x=1,13
When x=13
d2ydx2<0
Therefore, x=13 is point of local maximum and
x=1 is point of local minimum.
Now,
f(1)=5f(13)=13927f(0)=5f(2)=7
Hence,
Number of critical points is 2,
Global maximum is 7
Global minimum is 5.