Note the following points |z|2=z¯¯¯z, when z is real then z=¯¯¯z. From the given relation
z(1+|w|2)=w(1+|z|2)
∴zw=1+|z|21+|w|2=Real
Hence zw=(¯¯¯zw)=¯¯¯z¯¯¯¯w
or z¯¯¯¯w=¯¯¯zw ......(1)
Now (z¯¯¯z)w−(w¯¯¯¯w)z=z−w as given
or z(¯¯¯zw−1)−w(¯¯¯¯wz−1)=0
or (z¯¯¯¯w−1)(z−w)=0 by(1)
∴z=w or z¯¯¯¯w=1