For constant number a, consider the function f(x)=ax+cos2x+sinx+cosx on R such that f(u)<f(v) for u<v. If the range of a for any real number x is (mn,∞) where m,n∈N, then the minimum value of (m+n) is
Open in App
Solution
f(x)=ax+cos2x+sinx+cosx ⇒f′(x)=a−2sin2x+cosx−sinx
It is given that f(x) is strictly increasing function. ⇒f′(x)>0 for any real number x ⇒a>2sin2x+sinx−cosx⇒a>−2(sinx−cosx)2+2+sinx−cosx
Let t=sinx−cosx=√2sin(x−π4) ⇒−√2≤t≤√2
So the inequality can be written as a>−2t2+t+2
Let g(t)=−2t2+t+2=−2(t−14)2+178
The range of g(t) for −√2≤t≤√2 is g(−√2)≤g(t)≤g(14) ⇒−2−√2≤g(t)≤178
So, the range of a is a>max{g(t)}|t|≤√2 ⇒a>178 ⇒a∈(178,∞)
Hence, least value of m+n is 17+8=25