2dydx−2yx+1=x3y2⇒2y2dydx−2y3x+1=x3
Put y3=v⇒3y2dy=dv
∴6dvdx−2vx+1=x3 ...(1)
Here, P=−2x+1⇒∫Pdx=−∫2x+1dx=−2log(x+1)=log(x+1)−2
∴I.F.=elog(x+1)−2=1(x+1)2
Multiplying 1 by I.F., we get
6(x+1)2dvdx−2v(x+1)3=x3(x+1)2
Integrating both the sides
v1(x+1)3=∫x3(x+1)2dx+C
⇒y3(1+x)2=16x8+25x5+14x4+C
∴A+B=10