For differential equation (x+tany)dy=sin2ydx;y(2)=π4, then find the value of the constant.
Open in App
Solution
Given, (x+tany)dy=sin2ydx
⇒sin2ydxdy−x=tany
⇒dydx−xsin2y=12cos2y ...(1) Here P=−1sin2y⇒∫Pdy=−∫1sin2ydy
=12log(coty)=log(√coty) ∴I.F=elog(√coty)=√coty Multiplying (1) by I.F, we get √cotydxdy−x√cotysin2x=√coty2cos2y Integrating both sides x√coty=∫√coty2cos2ydy+c⇒x√coty=√coty.tany+c