z=x+iy
Then
x+iy+c√(x+1)2+y2+i=0
(x+c√(x+1)2+y2)+i(y+1)=0
Now
Real part =0 and imaginary part=0.
Hence
y=−1 ...(i)
And x+c√(x+1)2+y2=0
Or
x+c√(x+1)2+(−1)2=0 from i.
−x=c√(x+1)2+(−1)2
x2=c2(x+1)2+c2
x2=c2x2+2c2x+2c2
Or
(c2−1)x2+2c2x+2c2=0
x=−2c2±√4c4−8c2(c2−1)2(c2−1)
x=−2c2±√8c2−4c42(c2−1)
x=−c2±√2c2−c4c2−1
x=−c2±c√2−c2c2−1
For real x,
2−c2>0
c2<2
Or
1≤c≤√2 since c≥1.
Now if c=1, x=-1, hence (-1,-1).
If c=√2, we get x=−2 hence (−2,−1) and so on.