Given equation: (m−3)x2−4x+1=0
For equal roots, Discriminant (D)=0 where D=b2−4ac
Comparing given equation (m−3)x2−4x+1=0 with ax2+bx+c=0
We have a=m−3,b=−4 and c=1
D=(−4)2−4(m−3)×1=0
{∵D=b2−4ac}
⇒16−4m+12=0
⇒4m=28
⇒m=284=7
Put value of m in given equation we get
4x2−4x+1=0
⇒(2x−1)2=0 {∵a2−2ab+b2=(a−b)2}
⇒2x−1=0
⇒x=12
∴m=7 and x=12.